If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-18x-48=0
a = 10; b = -18; c = -48;
Δ = b2-4ac
Δ = -182-4·10·(-48)
Δ = 2244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2244}=\sqrt{4*561}=\sqrt{4}*\sqrt{561}=2\sqrt{561}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{561}}{2*10}=\frac{18-2\sqrt{561}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{561}}{2*10}=\frac{18+2\sqrt{561}}{20} $
| 5x6−7x5−25x4+35x3=0 | | 4d+7.20=6d | | -7=-4(2+2x) | | 3(x-4)=2x+6+x-18 | | -11=2/5x-5 | | 8+p=2p+10 | | 5(4x-2)=8x-14 | | -34+3p=8(6p+7) | | 37=-3=5(x+6 | | -7c-10=-6c-16 | | 2/5(x-2)=(-3) | | -7r-8=-14+8 | | X+4x-3=5x-2 | | C=13g+15 | | 1234234x+1345145=1341234x-1345 | | 4x+5+2x-2=0 | | -4y=40+6y | | -2(x+6)=8-3x | | -4-8c=-7c-3 | | P=2h+61 | | (x-8)0.2=0.4x | | 34+5x=2(x+8) | | 4-5b=3b+28 | | 34+5x=2(x+8 | | D=6a+16 | | -9=3-6(11+r) | | 8+6x=7x+3 | | 2x+6)(4x+7)=(6x+13) | | 57=2w+1 | | -4(1-4x)=10+9x | | -3(y-8)-4y=-46 | | p=6(p+10) |